Penalized likelihood phylogenetic inference: bridging the parsimony-likelihood gap.

نویسندگان

  • Junhyong Kim
  • Michael J Sanderson
چکیده

The increasing diversity and heterogeneity of molecular data for phylogeny estimation has led to development of complex models and model-based estimators. Here, we propose a penalized likelihood (PL) framework in which the levels of complexity in the underlying model can be smoothly controlled. We demonstrate the PL framework for a four-taxon tree case and investigate its properties. The PL framework yields an estimator in which the majority of currently employed estimators such as the maximum-parsimony estimator, homogeneous likelihood estimator, gamma mixture likelihood estimator, etc., become special cases of a single family of PL estimators. Furthermore, using the appropriate penalty function, the complexity of the underlying models can be partitioned into separately controlled classes allowing flexible control of model complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper's writings on corroboration.

Advocates of cladistic parsimony methods have invoked the philosophy of Karl Popper in an attempt to argue for the superiority of those methods over phylogenetic methods based on Ronald Fisher's statistical principle of likelihood. We argue that the concept of likelihood in general, and its application to problems of phylogenetic inference in particular, are highly compatible with Popper's phil...

متن کامل

Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data

Fossil taxa are critical to inferences of historical diversity and the origins of modern biodiversity, but realizing their evolutionary significance is contingent on restoring fossil species to their correct position within the tree of life. For most fossil species, morphology is the only source of data for phylogenetic inference; this has traditionally been analysed using parsimony, the predom...

متن کامل

An Investigation of Phylogenetic Likelihood Methods

We analyze the performance of likelihoodbased approaches used to reconstruct phylogenetic trees. Unlike other techniques such as Neighbor-Joining (NJ) and Maximum Parsimony (MP), relatively little is known regarding the behavior of algorithms founded on the principle of likelihood. We study the accuracy, speed, and likelihood scores of four representative likelihood-based methods (fastDNAml, Mr...

متن کامل

Surprising properties of Maximum Parsimony on phylogenetic networks

Phylogenetic inference aims at reconstructing the evolutionary relationships of different species given some data (e.g. DNA, RNA or proteins). Traditionally, the relationships between species were assumed to be treelike, so the most frequently used phylogenetic inference methods like Maximum Parsimony were originally introduced to reconstruct phylogenetic trees. However, it has been well-known ...

متن کامل

Parsimony, likelihood, and simplicity

The latest charge against parsimony in phylogenetic inference is that it involves estimating too many parameters. The charge is derived from the fact that, when each character is allowed a branch length vector of its own (instead of the homogeneous branch lengths assumed in current likelihood models), the results for likelihood and parsimony are identical. Parsimony, however, can also be derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systematic biology

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2008